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Abstract—Snowflake is a Data Cloud Platform with billions
of daily customer queries. As Snowflake continues to grow
with larger query volume, more diverse customers, and fre-
quent software upgrades, there is a higher than ever demand
for efficient testing. Snowtrail is a Snowflake-internal testing
infrastructure that prepares, executes, and measures workloads
from eligible customer queries. One of Snowtrail’s challenges
is to generate concise workloads that are both representative
of customer queries and thorough in testing Snowflake software
features. Existing Snowtrail query workloads are either explicitly
provided by users or pseudo-randomly selected. Here, we provide
a novel sampling solution based on clustering feature-vectorized
queries with unsupervised tasks. Variance across columns and
multivariate Kullback–Leibler divergence scores show that a
small K-Means sampled workload contains more spread but is
less similar to the original population distribution. Column-wise
Kolmogorov–Smirnov tests shows a general distinction between
the K-Means sampled population from the true distribution
regardless of sample size. Runtime experiments confirm that
K-Means-based sampling is likely at least quadratic time with
regard to the population size and linear time with regard to
the sample size, making it not as practical for overly large
datasets. Finally, an elbow method analogous to the K-Means
elbow method is implemented to select the ideal sample size based
on balancing variance and similarity to the population. Overall,
this work brings practical improvements to the Snowflake Data
Cloud, and the approach described in the paper is generally
applicable to data management systems with feature collection
capabilities.

Index Terms—cloud platform, Snowflake, machine learning,
clustering, sampling

I. INTRODUCTION

The Cloud [1] has moved data storage and software ex-

ecution away from local servers and towards data centers,

such as services offered by Amazon, Google, and Microsoft.

Due to shared infrastructure, cloud computing allows the re-

distribution of resources and services by flexible demand.

From a customer standpoint, cloud database has the advantage

of higher storage capacity and accessing capabilities, as well

as lower costs and the ease to manage and analyze [2].

Building on the foundation of cloud providers is the growth of

cloud native Software-as-a-Service (SaaS) and Platform-as-a-

Service (PaaS) models, such as Salesforce, Twilio, and Google

Workspace.

Another benefit cloud computing enables is the possibility

to perform online software updates without service downtime.

As cloud services operate globally and around the clock, this

capability has become a critical feature. The Snowflake Data

Cloud [3] is a pay-as-you-go data PaaS that is built bespoke

for the cloud. Snowflake fundamentally dissociates data com-

putations from storage, making queries more elastic and highly

available. The more frequently a cloud-based service provider

updates its systems, however, the less time available for

rigorous testing. To unleash the innovation potential of cloud-

based systems, it requires the identification, construction, and

execution of testing workloads that optimize the balance of

thoroughness and concision. Snowtrail [4] is a component

in Snowflake’s testing pipeline that generates testing query

workloads from customer queries. This infrastructure has the

objective to generate testing workloads that extensively tests

Snowflake features, consisting of queries that are represen-

tative of popular customer use cases. By leveraging customer

queries to do regression testing, Snowtrail is able to ensure that

customer workloads are less likely to be negatively impacted

by new releases.

Meanwhile, the evolution of machine learning algorithms,

along with the improved availability datasets, allows for

sophisticated techniques in sample selection tasks. In cross

discipline studies, both supervised and unsupervised machine

learning has found applications in areas such as genes selection

[5], crop selection [6], and features selection [7]. Specifically,

clustering algorithms have been applied to produce samples

with items that are representative of different classifications.

Cluster-based sampling is especially useful in pre-processing

imbalanced datasets, by clustering and selecting fixed amounts

of representative samples from each class [8] [9]. Following

this intuition, this work aims to use cluster-based sampling

to generate concise workloads with varied queries based on

Snowflake features.
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II. RELEVANT WORK

A. Current Snowtrail Sampling Procedures

Snowtrail workloads can be generated in one of two ways:

developers can either provide an explicit set of queries to

replay, or allow Snowtrail to sample queries. In the first

approach, developers are responsible for determining the set

of queries they wish to run with Snowtrail. Using our in-

ternal data analytical system built on top of the Snowflake

Data Cloud itself, which collects metadata about all cus-

tomer queries, developers can filter and join rich data sets

to collect queries and build workloads that target specific use-

cases, features, or query types. The alternative approach is to

let Snowtrail sample queries randomly. Snowtrail itself has

some constraints around which queries it can replay (which

statement types Snowtrail supports, etc), and developers can

provide additional constraints (queries with specific features,

queries from specific dates, etc). Snowtrail then randomly

samples a specified number of queries from those satisfying

the provided constraints.

B. NLP-based Workload Generalization

Previous research at Snowflake has investigated queries

based on raw SQL statements and optimized Snowflake query

plans [10]. It was shown that representation learning, e.g.

Query2Vec, can be used to vectorize queries. Then applying

methods such as K-Means would allow clustering and work-

load summarizing. Furthermore, error-generating queries can

be classified to find common patterns, potentially providing a

solution for testing and errors prediction.

Although novel, this NLP based technique has two main

drawbacks with respect to Snowtrail applications. Firstly, SQL

text and query plans are too high level when it comes to

making predictions and clustering based on Snowflake-secific

features. For example, semantically similar queries can have

significantly different features and applicable optimizations,

which weakens the correlation between query expressions

and specific errors. Secondly, computation for representation

learning over large datasets is expensive and time consuming,

and Snowflake’s frequent software updates require frequent

re-learning based on queries of the newest Snowflake version.

III. K-MEANS SAMPLING PROCEDURE

Our sampling procedure contains three main steps: retriev-

ing feature-tracking queries within Snowflake, vectorizing and

balancing the dataset, and running a series of unsupervised

tasks to sample queries. In addition to using predetermined

parameters, the Snowtrail user also has the option to let our

algorithm determine the optimal sample size. Fig. 1 is a

visualized flowchart for this procedure.

A. Features Tracking

It is important to be able to correlate job performance with

the usage of different Snowflake features. For this reason, we

built a custom table that joins together each customer query

with performance metrics such as: compile time, execution

time, queue time among others with features that could impact

Fig. 1. Procedure flowchart of Snowtrail’s new cluatering-based query
sampling. The new sampling process generates representative query workloads
with high variation in Snowflake features.

performance. Features that might impact performance fall into

3 main categories: characteristics of the data, characteristics

of the query, and applied optimizations. Data characteristics

include: the number of tables, how they’re joined, their size,

the type of table (such as clustered, external), etc. Query

characteristics include: the list of built-in and custom functions

used in the query, the number of subqueries, etc. Finally,

applied optimization includes: specific ways to balance joins,

perform pruning, parallelize work, compress data, etc.

The table is dynamically and incrementally updated daily

using data already available in our own data warehouse,

containing 1-2 billion queries. Most columns are numerical

or boolean data, but some columns contain JSON data such

as arrays and objects, to support dynamically adding more

features without altering the table’s schema. For the purpose

of vectorizing queries, we select a total of 94 feature columns

with strictly numerical or boolean data.

B. Vectorizing and Balancing Queries

After retrieving the query population, we fully vectorize the

dataset. We transform boolean feature columns to integers:

True to 1, False to 0, and NULL (meaning the feature was not

tracked for that specific query) to -1. Lastly, we standardize

each value across feature columns by removing the mean

and dividing by the standard deviation. Standardization is

necessary for the downstream classification task because each

feature value range differs greatly. The output is query vectors

of 94 dimensions.
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C. Sampling with PCA, K-Means, and KDTree

We chose to explore unsupervised learning, rather than

supervised learning, for two reasons. Firstly, dimensionality

reduction and clustering algorithms generally do not require

labeled datasets. Secondly, Snowtrail’s preference to dynam-

ically retrieve large sampling populations in real time makes

supervision a frequent and expensive job.

Because each query is represented as a 94-dimensional

vector, dimensionality reduction is necessary to reduce the

loss from the curse of dimensionality [11]. While many

techniques are available, we selected Principal Component

Analysis (PCA) because it has been shown to produce good re-

sults for pre-processing data for many machine learning tasks

[12]. PCA is an unsupervised multivariate statistical technique

that reduces the number of components in the dataset while

optimizing to preserve information by selecting components

with the greatest variance [13]. For Snowtrail applications,

with default parameters, PCA reduces query features from

94 to 15, which allows variance explained to be consistently

preserved above 70%.

K-Means is used for clustering queries and discovering

centroids. K-Means is an unsupervised classification algorithm

that performs clustering based on minimizing the Euclidean

distance between all points and the centroid of the cluster to

which they belong [14]. The challenge of K-Means is the NP

hard problem of identifying the optimal number of centroids,

which we denote by k. Snowtrail allows for the typical search

for k (given list of possible values, selecting k based on

lowest loss). Given the task of grouping k clusters, K-Means

algorithm works at the following:

1) Random selection of k queries as temporary cluster

centroids.

2) For each point, calculate Euclidean distance to all cen-

troids and assign the point to the closest centroid to form

temporary clusters.

3) Select k new clusters centroids by finding the center of

mass of each current cluster.

4) Repeat steps 2 and 3 until clusters are fixed.

K-Means is proved to finitely converge [15], and a special

K-Means++ initialization procedure [16] replaces the random

initialization for more consistent and better clustering per-

formances. This is mainly to avoid the random initialization

placing cluster centroids too closely. We also tested Mini-

Batch K-Means [17], a random batch version of K-Means

with lower runtime, but we rejected it for Snowtrail as our

experiments found that the decrease in runtime was relatively

small, while the clustering was significantly worse.

After confirming cluster centroids, a KDTree data structure

[18] is used to store and sample queries. The Snowtrail user

can specify any number of queries to select per cluster, and

the queries will be selected based on the closest Euclidean

distances to cluster centroids. Most Snowtrail applications just

sample one query per cluster to maximize variation among

queries.

IV. EVALUATION

We first run K-Means sampling with various population

sizes and sample workload sizes to analyze runtime. Then,

we conduct test runs to evaluate the performance differences

against uniform random sampling, which is Snowtrail’s current

main sampling method.

Fig. 2. K-Means is a superpolynomial algorithm that becomes less practical
with larger datasets.

A. Runtime Analysis
The running time for the K-Means sampling is dependent on

the sampling population, number of clusters, data dimensions,

and convergence speed. While research on K-Means runtime

upper-bound is ongoing, it is generally believed that K-Means

has superpolynomial time complexity [16]. This means that

Snowtrail should not use K-Means to sample overly large

datasets, provided that a reasonably size random sample pro-

vides a close approximation to the distribution of all Snowflake

queries [19].
Runtime statistics on local development environment with

real-time Snowhouse data retrieval is displayed in Fig. 2,

where fixed-sized 500 queries workloads are selected from

populations with increasing size. Increasing sample size with a

fixed population size is less costly, as K-Means runs in roughly

linear time, as shown in Fig. 3. Although not selected for our

application, a maximum iteration limit is available to prevent

runtime explosion, but at the cost of guaranteed convergence.

B. Workload Comparison with Random Sampling
To simulate performance for realistic Snowtrail runs, the

testing parameters are set as follows: the query population

is a fixed random selection of 100,000 customer queries in

the newest Snowflake version. 15 components are preserved

through PCA to preserve explained variance above 70%.

Then, we sample with various sample sizes from the query

population repeatedly for 10 times for consistency, and take the

mean value. At the same time, we generate a random sample

with the same population and sample size. The sample sizes

are each multiple of 100 from 100 to 2,000. We only com-

pare statistics with components post-PCA processing, and the
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Fig. 3. Runtime increases linearly with sample size. However, common
Snowtrail workloads are limited to around 1000 queries.

removed components are assumed to be similarly distributed

between the K-Means selected queries and randomly selected

queries.

To evaluate the spread of selected queries compared to

random sampling, we measure workloads’ average variance

across feature columns compared to the sampling population.

We take the mean of column variances across 10 runs per

feature, and take the mean across features. Fig. 4 shows the

change in variance as sample size increases. K-Means selected

sample has much greater variance, especially when sample

size is small, which suggests much greater spread in features’

values within the workload. The variance of the randomly

selected workload is almost identical vs. the true population

(which is 2.47). Notice that the K-Means sample’s variance

also converges towards the population as sample size grows.

This is likely due to K-Means centers also following a version

of the Central Limit Theorem [20]. This result is desirable for

Snowtrail runs with constraint on workload size, showing that

we can generate concise workloads with great spread in terms

of Snowflake features.

We use Kullback–Leibler (KL) divergence [21] to measure

the similarity in distribution between K-Means samples and

random samples. Given two d dimensional samples with

dimensional mean matrices μ1, μ2 and dimensional covariance

matrices Σ1,Σ2, a multivariate version of KL divergence is

implemented:

KL =
1

2
[log(

|Σ2|
|Σ1| )−d+tr(Σ−1

2 Σ1)+(μ2−μ1)
TΣ−1

2 (μ2−μ1)]

(1)

Results displayed in Fig. 5 indicate that K-Means sample

results differ greatly from the population when sample size

is small, and converge towards the results for the population.

The dissimilarity is because K-Means does not cluster exactly

based on population density, and resulting centroids are likely

more distributed across values than concentrated in alignment

with density. However, as the number of clusters increases, K-

Fig. 4. Column-wise variance measures the spread of queries in one
dimension per workload. The mean of variances are taken to represent the
spread of the specific workload. K-Means selected samples have much greater
spread than randomly selected samples. Randomly selected samples have a
similar spread as the population. As sample size increases, the spread of K-
Means selected samples converges towards the population’s spread.

Fig. 5. Kullback–Leibler divergence suggests that the K-Means sample grows
increasingly similar the population as the sample size increases. This is
because K-Means does not follow the density or distribution of points, but
still follows the general Central Limit Theorem.

Means samples are forced to compress in distance, making it

more similar to the population. The very large KL divergence

at small sample sizes suggests the possible need to better

simulate the population, and the inverse logarithmic shaped

curve means that the similarity to the population can quickly

increase without overly large datasets.

While KL divergence is a general measure of discrepancy

between distributions, the Kolmogorov-Smirnov (KS) test is

a null hypothesis test that distinguishes between populations

[22]. While the multidimensional KS test have been widely

researched [23], we will use 2-sample KS tests across in-

dividual features and average the results. The test takes in

samples d1, d2 and outputs test statistic s, where a higher value

indicates high likelihood of the two samples being different.

As shown from Fig. 6, the score of the random sample
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Fig. 6. Kolmogorov-Smirnov test suggests that the K-Means sample is highly
distinct from the query population, and the random sample converges to the
population as said by the Central Limit Theorem.

converges to zero, again supported by the Central Limit

Theorem. However, there is no clear trend of convergence for

the K-Means sample. Overall, the KS test strongly suggests the

distinction from the population for the K-Means sampling. One

possible reason is that K-Means can over-sample low-density

extreme examples to minimize loss, yet the KS test takes into

account only the maximum difference between distribution

curves, which can be skewed by such samples.

V. AUTOMATED SAMPLE SIZE SELECTION

As suggested by the inverse logarithmic shapes of the KL

divergence scores and mean variance across column values,

there is an ideal point where the marginal increase in similarity

to the population decreases with sample size, while still

carrying significantly larger variance among queries. Thus, we

implement an elbow method for selecting a workload size.

The method is almost identical to the elbow method popularly

used in K-Means implementations for selecting the ideal k
value [24]. Upon testing, the elbow is consistent for the KL

divergence and variance curves, and the elbow values are

generally close between the two curves. In general, the elbow-

selected workload consistently has the following traits: concise

(less than 1000 queries in our tests), varied in queries features,

and similar enough to the population. Snowtrail users now

have the option to have the algorithm automatically select the

ideal workload size by passing in a list of possible sizes. Note

that this is an extended usage of the elbow K-Means method,

which means that runtime increases roughly linearly with the

increase in possible sample sizes.

VI. CONCLUSION

Along with the increasing popularity in cloud data services,

the growth of Snowflake demands high efficiency from its

testing infrastructures. As a key component of Snowflake’s

development and release testing pipeline, Snowtrail gains the

capability to sample customer queries with an ideal balance

of broad feature coverage and strong resemblance of popular

Snowflake usages. To realize this, we begin with vectorized

queries that represent feature characteristics and use PCA to

reduce dimensions. Then, we use K-Means to classify queries

into clusters and sample within clusters. The method can

be fine tuned with different population sizes, sample sizes,

PCA components, cluster sizes, and other filters. Furthermore,

Snowtrail can optionally determine the ideal sample size using

an elbow method analogous to the K-Means elbow method.

The strength of our sampling procedure is that the resulting

workload has great variation among queries, achieving broad

feature coverage given a workload size constraint. Interest-

ingly, a concise workload likely differs in distribution from

total customer queries, but this is less important than coverage

for Snowtrail purposes, and increasing sample size quickly

reduces this gap. Because the approach is based on K-Means,

the weaknesses are the polynomial runtime of K-Means and

the curse of dimensionality in clustering. Overall, the K-

Means sampling procedure gives Snowflake another tool in

automated, efficient testing, and is a direct improvement from

current Snowtrail sampling methods in terms of broad fea-

ture coverage. Outside of Snowflake, provided similar feature

stores, similar machine learning based approaches can be

generally applied to select workloads for software testing.
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